тренинги и |
| бизнес-курсы |
заявка
|
|
Курсы | Форум | Галерея | Про тех | ? |
Палочки НепераШотландский богослов и оккультист Джон Непер (1550—1617) сегодня известен как создатель логарифмов. Именно изобретение логарифмов, наряду с другими достижениями в математике, а также в физике и астрономии, вписало имя этого человека в историю. Не его основная, как он сам утверждал, теологическая деятельность, а логарифмы. В XVI веке в Европе необходимость выполнять математические расчеты стала появляться не только у ученых, но и у все большего числа обывателей. Если для ученых требовалось ускорить процесс сложных научных вычислений, то простому человеку важно было уметь подсчитать, например, размер наследства, которое оставит богатый дядюшка. Если со сложением-вычитанием в пределах десятка проблем не возникало, то умножение и деление могли вызвать затруднения. Даже и в наше время не все взрослые могут быстро умножить одно большое число на другое. Сначала Непер озаботился облегчением вычислений для профессионалов, придумав, как заменить умножение на сложение. Речь шла о проведении тригонометрических операций в неевклидовой геометрии. Сегодня из курса школьной математики известно, что для умножения чисел с одинаковыми основаниями и разными показателями степеней достаточно сложить степени. Например: 125×25 = 53×52, 3 + 2 = 5, 53×52 = 55, а 55 = 3125. Следовательно, достаточно составить таблицы, в которых каждому числу будет поставлен в соответствие показатель его степени по определенному основанию. В этом случае результат умножения можно будет получать, просто складывая числа в этой таблице и в ней же находя результат. В дальнейшем это изобретение Непера получило и нетабличную реализацию в виде логарифмической линейки, верой и правдой прослужившей не одному поколению ученых и инженеров, несмотря на имеющуюся погрешность. Что же касается потребностей более широких масс, Непер придумал, как заменить умножение и деление вычитанием и сложением. Он не был здесь первооткрывателем. Скорее опирался на работы индийских и арабских ученых, а также работы итальянского средневекового математика Леонардо Фибоначчи. Он усовершенствовал их идеи и нашел простую реализацию в виде специального устройства – «палочек Непера». Работа, в которой Непер описал это свое изобретение, называлась «Рабдология», что в переводе с греческого означает «Наука о палочках». Совсем обходиться без промежуточных записей, не получалось, но забыть о таблице умножения было можно. Устройство и работу палочек Непера можно объяснить так. Возьмем полоски бумаги и заранее запишем на них таблицу умножения, разделив диагональной чертой единицы и десятки результата.
Допустим мы хотим умножить 3682 на 7. Берем полоски, которые начинаются на 3, 6, 8 и 2 и располагаем их в соответствующем порядке. Слева ставим полоску начинающуюся с единицы.
В первой полоске выбираем строчку на которую хотим умножить, то есть 7. Складываем числа по диагоналям.
Получаем: 2 / 1+4 / 2+5 / 6+1 / 4 Результат умножения: 25774 В дальнейшем эти счетные палочки различным образом модернизировались, с их помощью научились извлекать квадратный корень. Непер, используя принципы рабдологии, создал так называемый карточный или рабдологический абак. Он представлял собой относительно небольшой ящик, с помощью которого можно было перемножать 100- и 200-значные числа. В 1666 году Самюэль Морлэнд усовершенствовал палочки Непера перенеся таблицу умножения на диски. Это упростило использование системы разработанной Непером и очень понравилось современникам. Морлэнд назвал свое детище «Новая множительная машина». Это устройство было похоже на первые арифмометры, и его можно считать прапрадедушкой современных калькуляторов. Палочки Непера были одним из первых устройств, которые облегчили современникам сложные вычисления, еще до появления "Паскалины" и арифмометра Лейбница. Сегодня палочки Непера похожи на счетные палочки для первоклашек или забавную развивающую игрушку для самых маленьких, которая помогает вспомнить таблицу умножения. Палочки Непера дают нам повод лишний раз помянуть добрым словом их изобретателя, стоявшего у истоков современной математики.
Статья ПРО.ТЕХ: • 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
Заявки на обучение и консультации по компьютерным программам и технологиям принимаются по телефону: +7 (985) | ||||||
| ||||||
|